
A Methodology to Detect ”Hard-to-Find” bugs in Large Multithreaded Java Programs

Sreeranga P. Rajan and
Thomas Sidle

Fujitsu Laboratories (FLA)
Sunnyvale, CA

sree.rajan@us.fujitsu.com

Graham Hughes
University of California

Santa Barbara, CA

Keith Swenson
Fujitsu Software

Corporation
Sunnyvale, CA

ABSTRACT
Multithreaded programming has become increasingly essential for
developing highly efficient software. Concurrency in multithreaded
programs introduces additional complexity in software verification
and testing, and thereby significantly increasing the cost of Quality
Assurance (QA). In this report we describe the verification of enter-
prise client-server Business Process Management (BPM)/workflow
software. We developed a practical verification methodology using
a formal analysis tool called Java PathFinder (JPF) from NASA
with special emphasis on finding deadlocks and race conditions.
The results revealed race conditions that lead to data corruption er-
rors whose detection would have been prohibitively expensive with
conventional testing and QA methods. To the best of our knowl-
edge, this is the first time a methodology involving formal analysis
has been successfully applied to such a large client-serversoftware
project.

1. BACKGROUND AND HISTORY
Sree Rajan and Tom Sidle of Advanced CAD Department, Fujitsu
Laboratories of America (FLA), initiated the contact with Keith
Swenson, Chief Scientist and Architect of Interstage Business Process
Management (I-BPM) and Director of Fujitsu Software Corpora-
tion in 2003. In this meeting we concluded that there was scope
for applying formal verification techniques to detect deadlocks and
race conditions in Fujitsu’s workflow client-server Java software.
We established research links with Willem Visser of NASA and
obtained the model checking tool called Java Path Finder (JPF) for
trial purposes. We then had several meetings with the software de-
velopment team and did preliminary trials on applying JPF tothe
workflow software. As it is well known that applying formal model
checking tools to large software or hardware designs fail, we came
up with a strategy to apply model checking only to portions ofthe
large workflow software with promising results. In July 2004, we
attended the Computer-Aided Verification (CAV) conferenceand
met with Willem Visser. With his acceptance to collaborate in the
software verification of a real large software product, NASAagreed
to support our software verification activity in providing JPF and
also funding for a student intern if requested. After a month-long
search for a competent doctoral student researcher, GrahamHughes

** This is the first time a successful attempt has been made in applying for-
mal analysis for finding bugs in very large client-server industrial strength
software. Interstage Business Process Management (I-BPM)software de-
veloped and marketed by Fujitsu Software Corporation is a complex and
mature product, with more than 1500 classes spanning more than 500,000
lines of Java code. The challenge in finding bugs in such a large software
program is as hard as finding a small needle in big haystack. Our methodol-
ogy has helped increase the quality of the product in the field. All the bugs
reported in this memo have or had been fixed in the field.

from UCSB accepted to visit us starting August 23, 2004 for a few
months to work on verifying I-BPM software using JPF. Initially,
the most difficult part was how to select portions of the I-BPMcode
on which we need to perform model checking. I-BPM is a complex
and mature product, with more than 1500 classes spanning more
than 500,000 lines of Java code. We were challenged to discover
deadlocks and race conditions in the cache and other portions of I-
BPM that they could not find using conventional tools. We met this
challenge successfully in 5 weeks by the end of September 2004.
Our methodology has helped increase the quality of the product in
the field, thereby demonstrating the effectiveness of formal analy-
sis in detecting complex concurrency bugs. All the bugs reported
in this memo have or had been fixed in the field.

2. INTRODUCTION

Nondeterminacy is the possibility that a concurrent program yields
different outputs for different runs with the same input data [RAM85].
Errors such as deadlocks, livelocks and race conditions arelatent in
concurrent shared-memory programs. Without a formal proof, the
very existence of these errors can be very hard to find.

A data race condition exists when multiple entities (threads/processes)
concurrently read and write the same data, and the outcome ofthe
execution depends on the particular order in which the accesses
take place. In general, detecting race conditions is NP-hard. Dead-
lock occurs when a multi-threaded program is unable to make progress
because a thread is waiting for a condition that will never happen.

Deadlocks and race conditions are the two most significant prob-
lems that occur in concurrent programs. Java supports concur-
rent programming that includes synchronization primitives “wait”
and “notify” for controlling access to shared resources by multiple
threads.

In this project we considered the Java-based flagship Business Process
Management (BPM) product, named Interstage Business Process
Manager (I-BPM), which is developed and marketed by Fujitsu
Software Corporation.

We have developed a methodology to detect correctness problems
due to concurrency associated with large multithreaded programs.
We use a Java program model checker called Java PathFinder (JPF) [2]
developed at NASA. It implements a Java virtual machine permit-
ting direct formal analysis of Java programs, unlike many other for-
mal analysis tools. We also provide a set of recommended program-
ming discipline to minimize correctness errors in multithreaded

Java programs.

3. I-BPM OVERVIEW
The system [1] has a 4 tier architecture as shown in Figure 1. The
user interface can be implemented either as a Java based thick client,
Java applets, or as web pages in a browser. The browser is served
by the web tier, which is composed from JSP and servlet compo-
nents running in a web server. The main process logic and the
analytics engine reside in the BPM tier. The fourth tier contains the
underlying repositories such as database, directory, and document
management as well as connectivity to other systems using a vari-
ety of mechanisms. Various modules that consitute the interfaces
between different tiers use Java RMI.

4. VERIFICATION METHODOLOGY
I-BPM has been in existence in the field for a number of years, and
therefore our exercise in detecting bugs in this product is akin to
finding a needle in a haystack. Applying formal analysis tools to
large software programs has proved to be a futile exercise. Practical
multithreaded programs typically are plagued by a large state space
that is beyond the capabilities of formal analysis tools. Adding to
this difficulty are the File and Network I/O and library constructs
that are not within the scope of JPF and other model checkers.To-
gether these reasons compel us to provide a verification methodol-
ogy that involves formal analysis tools such as JPF.

Our verification methodology comprises of 5repetitive steps:

• Bring to focus possible ”buggy regions” by rapid high-level
analysis and a description of analomous behavior from the
software team;

• Preparing the environment for applying formal analysis, in-
cluding stubbing out RMI and I/O calls;

• Abstracting out irrelevant details—for example, references to
localization as part of java.locale were irrelevant to the goals
of this project;

• Applying JPF;

• Analyzing the results from application of JPF

We were informed that the product in the field was susceptibleto
deadlocks, the frequency of which went up when different data-
bases were used. This suggested to us that the subsystem associated
with the database would be a good place to start.

Because I-BPM is broken up into subsystems that use RMI to com-
municate, the network protocol that they use to communicatewith
the database subsystem is exposed. The relevant part of thisRMI
protocol shown in Figure 2 is as follows:

1. Client code acquires the subsystem’s published interface,
DbAdapter, using RMI.

2. Client code callsgetConnection() on the
DbAdapter, getting aDbConnection.

3. Client code uses the database through theDbConnection.

4. Client code releases the connection; return to step 2.

This turns out to be too simple for real use. The database subsys-
tem attempts to avoid creating and destroyingDbConnections
indiscriminately, on the grounds that this is very slow. So the re-
lease in step 4 actually returns thatDbConnection to a pool that
connections are selected from in step 2. Now we have a different
problem; if a client dies for some reason while it holds a DbCon-
nection, or there is some network trouble, or if for any otherreason
a client never gets around to performing step 4, that DbConnection
will never be returned to the pool and a resource leak will be cre-
ated. To solve this problem, I-BPM checked each of its connections
in step 2 to see if the original client is still alive, and willhand out
an already allocated connection to the new client, believing that the
original client is dead.

By itself, this is harmless; however, I-BPM’s method of determin-
ing whether or not a client is dead is whether the connection is
five minutes old. If for any reason—database row locks, database
backup, network latency, heavy load, just taking a while—a client
takes more than five minutes to process a transaction, it runsthe
risk that its connection will be given to some other client.

This is a disaster waiting to happen; the two clients transactions
will be interleaved, and additionally the JDBC standard does not
mandate thatjava.sql.Connection objects be thread safe.

5. CACHE VERIFICATION
After analysing this protocol, at the request of the development
team we began analyzing part of the object cache, whose goal is
to make accesses to the database no more frequent than is totally
necessary. We specifically concentrated on the
ProcessDefinitionProxy class, which acts as a layer be-
tween the main code and the database adapter specifically focused
onProcessDefinitionImpl structures.

There were a number of concurrency errors present; a list of rec-
ommendations for avoiding them is presented in Section 6. Many
of these errors were harmless because of the use of
java.util.Hashtable, which does its own locking, but many
were not.

There were several public methods that accessed shared datawith-
out locking it appropriately; these methods were:

• saveBrandNew (which is harmless because ofHashtable
locks

• comboCommit (which causes a race between two remove
invocations)

• comboEdit

• edit (which is harmless because ofHashtable locks

• commit (which causes a race between get and put but only
if the id is shared)

• destroy (which causes a race between two remove invo-
cations)

• fetchFromServer (not public but insufficient locking dis-
cipline causes public methods that call it to be faulty)

• invalidateCache (which causes a race between a get
and a remove)

We also discovered several public methods that accessed shared
data without any synchronization whatsoever; these were:

• setWFSession

• setLastSaved

• addPlanListener

• removePlanListener

• fireEvent

• isPlanChanged

• setTriggerState

The object caches were publically visible and several otherclasses
used them; the classWFAdminSessionImpl goes so far as to
modify the caches directly, again with no locking discipline at all.

Some miscellaneous synchronization oddities discovered were

• getUniqueId superfluously synchronizes on a static ob-
ject after synchronizing on the class,

• getNewId synchronizes on a per-object lock, which ac-
complishes nothing.

An additional serendipitous discovery was an initialization error in
theProcessDefinitionProxy object; when a
ProcessDefinitionProxy reads a process definition from
the database, it caches the identifier in thepdid field, a number
uniquely determining the process. When a new process defini-
tion is created, this identifier has not yet been determined;after
the process definition is saved to the database, this identifier cache
should be set to the actual value instead of the default valueof 0.
This necessary update was omitted.

This bug was discovered during a stress run through the system
using JPF; we had no idea that it existed and just wanted to verify
that the system behaves appropriately in the presence of several
threads working on different process definitions. We discovered
that they were all attempting to work on the same database object
(that being object #0) and spent some hours trying to determine
how we were “misusing” the system to cause this to occur, before
we traced it to this cache update never occuring.

6. RECOMMENDED PROGRAMMING DIS-
CIPLINE

There is a marked difference in kind between the errors described
in Section 4 and those described in Section 5; the former exposes
a subtle flaw in the protocol two subsystems use to communicate,
whereas the errors in the latter section largely come from insuffi-
cient or incorrect locking discipline. A more rigid coding style can
pick up the “low hanging fruit” of insufficient locking discipline, al-
though it will not have any real effect on larger architectural flaws.

A comment, first: locking discipline is only important if a Java
object is to be used in multiple threads simultaneously. Many Java
objects are written under the assumption that this will never occur.
However, because the computation model for threads exposesthe

entirety of local storage to concurrent modification, it is very easy
for one insufficiently careful piece of concurrent code to violate
this assumption.

One cure for this is to carefully quarantine the business of concur-
rency to a few gatekeeper objects, and this is the architectural style
that I-BPM used. There are a great many objects in a Java system
that become gatekeepers by default; anything that implements a re-
mote interface exposes itself to the Java RMI implicit concurrency
(wherein multiple consumers of a published interface are mirrored
in the multiple independent threads of control accessing that same
interface, none of which is made obvious through the use of RMI).

For this to work, there are several requirements of a gatekeeper:

1. Every method that accesses shared data must be protected by
locks.

2. Every piece of shared data must be protected by the same
lock each time.

3. Every method that returns data and every piece of public
data must either return a newly created independent object
for each client, or must return a gatekeeper object.

An interesting side effect is any object that is entirely read only
(that is, the fields are set up by the constructor and never modified
after the object has been created) is a gatekeeper even in theabsence
of locks, because the information can never change.

The I-BPM code base violated, largely by accident, omissionor
misunderstanding, each of these rules. Some of these turn out to be
harmless because of the aforementionedHashtable locking, but
we must recommend against trusting the locking discipline of the
entire enterprise to this, for two reasons:

1. the Hashtable locks are too low level; that is, while the Hashtable
will prevent concurrent modification it does not protect you
over the very frequent get/modify/return or isPresent/insert
or isPresent/delete cycles;

2. serious concurrency errors can occur that do not involve the
Hashtable but go unnoticed because the developers are used
to leaving concurrency discipline up to the standard library.

6.1 Rule #1
Java contains built in constructs for thread locks in thesynchronized
keyword; an entire method can be marked as synchronized, or just a
small block; in the latter case, the object to be locked must be spec-
ified explicitly; in the former it is the object the method belongs to
(or the class object, if the method is static).

Every piece of shared data must be protected by a synchronized
block, or by a synchronized method tag. An example correct usage,
from the I-BPM source code:

public synchronized ProcessDefinitionProxy
saveBrandNew ()

{
...
if (!brandNew) {

...
}

}

An example of incorrect usage, where the shared data is not locked:

public void setWFSession (WFSessionImpl wfs)
{

...
if (brandNew && userAgentProxy == null) {

...
}

}

And a fixed version:

public synchronized void
setWFSession (WFSessionImpl wfs)

{
...
if (brandNew && userAgentProxy == null) {

...
}

}

Note that these tags are largely unnecessary for private methods
if it is the case that every public method is protected by a lock;
after all, there is no way that the private methods could be called
without the lock. The same may be true of protected and default
visibility methods, but because they are also accessible byobjects
in the same package as the class in question, more attention must
be paid to them.

6.2 Rule #2
For the locks to be effective, the shared data must always be pro-
tected by the same lock. For object local data, this can be achieved
by using the synchronized tag on the method; this becomes much
more complex when an object is shared between objects.

I-BPM contained several cache bugs where methods that lock an
instance ofProcessDefinitionProxy access static data that
is a part of the classProcessDefinitionProxy; as a result,
when two objects try to use this shared data, they each lock different
objects (themselves) and so the shared data is unprotected.

An example of incorrect usage (herepdStructShare is a static
cache shared by allProcessDefinitionProxy objects):

public synchronized void commit (String notUsed)
{

...
ObjectCacheHolder hldr =

(ObjectCacheHolder) pdStructShare.get (idkey);
if (hdlr != null)

sharedPdStruct = hldr.getProcDefStruct ();
if (sharedPdStruct != null) {

...
pdStructShare.put (idkey, ...);

}
...

}

And now a fixed version:

public synchronized void commit (String notUsed)
{

...
synchronized (ProcessDefinitionProxy.class) {

ObjectCacheHolder hldr =
(ObjectCacheHolder) pdStructShare.get (idkey);

if (hdlr != null)
sharedPdStruct = hldr.getProcDefStruct ();

if (sharedPdStruct != null) {
...
pdStructShare.put (idkey, ...);

}
}
...

}

6.3 Rule #3
The idea behind this is to preserve the gatekeeper properties; if a
gatekeeper object somehow yields an object that is shared between
threads that does not satisfy the gatekeeper properties, then trouble
is inevitable.

I-BPM went out-of-the-way to do this, packaging up all modeldata
in structures that are allocated freely per object. However, the ob-
ject cachespdCache andpdStructShare are public objects,
and were never locked properly; some of the classes that usedthis
(for example,WFAdminSessionImpl) modified these caches
directly, but more common was to use them to iterate over all avail-
able proxies and remove specified ones.

A better solution would be to move this functionality to the
ProcessDefinitionProxy class, and then protect it behind a
synchronized block. This would preserve the gatekeeper properties,
and then the caches could be made private to the class. We became
aware that the process of rearchitecting this portion of I-BPM is
underway.

7. ARCHITECTURAL
RECOMMENDATIONS

We recommend rethinking the protocol cited in Section 4 withan
eye toward reliable disconnection; either the accessing object must
be known to the database (so that its liveness can be reliablyde-
termined) or there must be a 1:1 relationship between remoteac-
cessors and server objects, and the pooling must be done on the
database adapter side (so that disconnection can be reliably accom-
plished) or disconnection of dead threads must be abandoned.

This last option is easily dismissed as impractical in a realworld
environment, so one of the other two must be taken; the team has
been reconsidering this part of the protocol for unrelated reasons
and has decided to take option #2. We also recommend revisiting
all objects that must deal with concurrency, and making theminto
gatekeeper objects, as recommended in Section 6.

8. DISCUSSION AND CONCLUSIONS
Deadlocks and race conditions are two sides of the “concurrency
coin” that arise due to sharing violations in multithreadedprograms.
We chose to use Java programming language as an object of our ef-
fort due the absence of pointers that has been a constant challenge
for formal analysis of imperative programs. This allowed usto
focus our efforts on concurrency correctness problems rather than
pointer analysis. We were also fortunate that we did not encounter
state-space explosion, which would manifest in explicit-state model
checkers as processing time unlike the problem of running out of
memory in BDD-based model checking. Furthermore, our work at-
tests to the common folklore in the verification and test community
that if the system under validation has bugs, it will manifest not too
deep in the state space.

9. SUMMARY AND FUTURE DIRECTIONS
In this report we have shown that formal analysis accompanied with
a systematic methodology can successfully detect hard to find bugs
in multithreaded programs. We detected two data corruptionerrors
and a number of race conditions in Fujitsu I-BPM product. We have
provided a number of recommendations advocating a discipline in
multithreaded programming to avoid errors such as deadlocks and
race conditions arising due to concurrency. All the bugs reported
in this memo have or had been fixed in the field. To the best of
our knowledge, this is the first time a methodology involvingfor-
mal analysis has been successfully applied to such a large software
project. As part of future work, we plan to capture the methodol-
ogy as part of an Integrated Development Environment (IDE) for
Java software development so that software developers at Fujitsu
could use integrated formal analysis to detect hard-to-findbugs at
an early stage.

10. ACKNOWLEDGEMENTS
This work may not have even begun without the existence of JPF,
which was developed and kindly provided by Dr. Willem Visser
of NASA. Dr. Visser backed it up with ”round-the-clock” guid-
ance and support, without which we would not have succeeded.
Shamim Quadir and Ivar Alexander of Fujitsu Software Corpora-
tion provided great help in understanding the software architecture
and pointers to potential deadlocks and race conditions. This work
would not have been possible without a strong suppport from Dr.
N. Kawato. Dr. K. Kawamura and Dr. T. Nakata of FLL provided
strong encouragement for this work.

11. REFERENCES
[1] Keith SwensonInterstage iFlow Architecture White Paper,

Fujitsu Software Corporation, July 21, 2003.

[2] G. Brat, K. Havelund, S. Park, and W. VisserI Java
PathFinder - A second generation of a Java model checker ,
Proceedings of Workshop on Advances in Verification,
Chicago, Illinois, July 2000.

Figure 1: I-BPM Architecture

Figure 2: DBFSM Architecture

