A Methodology to Detect "Hard-to-Find” bugs in Large Multieaded Java Programs

Sreeranga P. Rajan and
Thomas Sidle
Fujitsu Laboratories (FLA)
Sunnyvale, CA

sree.rajan@us.fujitsu.com

ABSTRACT

Multithreaded programming has become increasingly esddot
developing highly efficient software. Concurrency in mtlteaded
programs introduces additional complexity in softwaréfieation
and testing, and thereby significantly increasing the co®uality
Assurance (QA). In this report we describe the verificatibernter-
prise client-server Business Process Management (BP Mfloay
software. We developed a practical verification methodplaging

a formal analysis tool called Java PathFinder (JPF) from NAS
with special emphasis on finding deadlocks and race conditio
The results revealed race conditions that lead to datamtooruer-
rors whose detection would have been prohibitively expensith
conventional testing and QA methods. To the best of our knowl
edge, this is the first time a methodology involving formadlgsis
has been successfully applied to such a large client-ssofsvare
project.

1. BACKGROUND AND HISTORY

Sree Rajan and Tom Sidle of Advanced CAD Department, Fujitsu
Laboratories of America (FLA), initiated the contact witleikh
Swenson, Chief Scientist and Architect of Interstage BessriProcess
Management (I-BPM) and Director of Fujitsu Software Cogsor
tion in 2003. In this meeting we concluded that there was ascop
for applying formal verification techniques to detect dealls and
race conditions in Fujitsu’'s workflow client-server Javdtware.
We established research links with Willem Visser of NASA and
obtained the model checking tool called Java Path Findér)(fiP
trial purposes. We then had several meetings with the soétde:
velopment team and did preliminary trials on applying JPEh®
workflow software. As it is well known that applying formal chel
checking tools to large software or hardware designs falcame

up with a strategy to apply model checking only to portionshef
large workflow software with promising results. In July 200
attended the Computer-Aided Verification (CAV) confereracel
met with Willem Visser. With his acceptance to collaboratehe
software verification of a real large software product, NA&skeed

to support our software verification activity in providin§B and
also funding for a student intern if requested. After a meotig
search for a competent doctoral student researcher, Grdbghes

** This is the first time a successful attempt has been madppiyang for-

mal analysis for finding bugs in very large client-serverusiial strength
software. Interstage Business Process Management (I-BBfdyare de-
veloped and marketed by Fujitsu Software Corporation israptex and
mature product, with more than 1500 classes spanning mane360,000
lines of Java code. The challenge in finding bugs in such & lsoftware
program is as hard as finding a small needle in big haystackn@thodol-
ogy has helped increase the quality of the product in the.figlithe bugs
reported in this memo have or had been fixed in the field.

Graham Hughes
University of California
Santa Barbara, CA

Keith Swenson
Fujitsu Software
Corporation
Sunnyvale, CA

from UCSB accepted to visit us starting August 23, 2004 fave f
months to work on verifying I-BPM software using JPF. Inliia
the most difficult part was how to select portions of the |-BBdde

on which we need to perform model checking. I-BPM is a complex
and mature product, with more than 1500 classes spanning mor
than 500,000 lines of Java code. We were challenged to discov
deadlocks and race conditions in the cache and other psrtibi
BPM that they could not find using conventional tools. We rhig t
challenge successfully in 5 weeks by the end of Septembet.200
Our methodology has helped increase the quality of the mtadu
the field, thereby demonstrating the effectiveness of fbanaly-

sis in detecting complex concurrency bugs. All the bugs ntepo

in this memo have or had been fixed in the field.

2. INTRODUCTION

Nondeterminacy is the possibility that a concurrent progyselds
different outputs for different runs with the same inputed&®AM85].
Errors such as deadlocks, livelocks and race conditionistmet in
concurrent shared-memory programs. Without a formal pritwef
very existence of these errors can be very hard to find.

A datarace condition exists when multiple entities (threads/proesys
concurrently read and write the same data, and the outconfe of
execution depends on the particular order in which the aeses
take place. In general, detecting race conditions is N@-tzead-

lock occurs when a multi-threaded program is unable to make gssgr
because a thread is waiting for a condition that will neveten.

Deadlocks and race conditions are the two most significaoti-pr
lems that occur in concurrent programs. Java supports concu
rent programming that includes synchronization primgiveait”
and “notify” for controlling access to shared resources tiple
threads.

In this project we considered the Java-based flagship BssPecess
Management (BPM) product, named Interstage Business $¥oce
Manager (I-BPM), which is developed and marketed by Fujitsu
Software Corporation.

We have developed a methodology to detect correctnessepnsbl
due to concurrency associated with large multithreadedrpros.
We use a Java program model checker called Java PathFiRdg{R)
developed at NASA. It implements a Java virtual machine fterm
ting direct formal analysis of Java programs, unlike mateofor-
mal analysis tools. We also provide a set of recommendedamog
ming discipline to minimize correctness errors in muléthded

Java programs.

3. |-BPM OVERVIEW

The system [1] has a 4 tier architecture as shown in Figurehé. T
user interface can be implemented either as a Java baskdlibitt,
Java applets, or as web pages in a browser. The browser edserv

by the web tier, which is composed from JSP and servlet compo-
nents running in a web server. The main process logic and the

analytics engine reside in the BPM tier. The fourth tier aqm the
underlying repositories such as database, directory, andrent
management as well as connectivity to other systems usiagia v
ety of mechanisms. Various modules that consitute thefaues
between different tiers use Java RMI.

4. VERIFICATION METHODOLOGY

I-BPM has been in existence in the field for a number of years, a
therefore our exercise in detecting bugs in this produckis t
finding a needle in a haystack. Applying formal analysis sdol
large software programs has proved to be a futile exercisetiPal
multithreaded programs typically are plagued by a large Sjaace
that is beyond the capabilities of formal analysis tools.difid to
this difficulty are the File and Network I/O and library consits
that are not within the scope of JPF and other model checKers.
gether these reasons compel us to provide a verificationadelth
ogy that involves formal analysis tools such as JPF.

Our verification methodology comprises of épetitive steps:

e Bring to focus possible "buggy regions” by rapid high-level

analysis and a description of analomous behavior from the

software team;

e Preparing the environment for applying formal analysis, in
cluding stubbing out RMI and 1/O calls;

e Abstracting out irrelevant details—for example, refeesio
localization as part of java.locale were irrelevant to tbalg
of this project;

e Applying JPF;

e Analyzing the results from application of JPF

We were informed that the product in the field was susceptible
deadlocks, the frequency of which went up when differenadat
bases were used. This suggested to us that the subsystaiatezto
with the database would be a good place to start.

Because I-BPM is broken up into subsystems that use RMI te com
municate, the network protocol that they use to communiaétte

the database subsystem is exposed. The relevant part ¢ttHis
protocol shown in Figure 2 is as follows:

1. Client code acquires the subsystem’s published inteyfac
DbAdapt er , using RMI.

2. Client code callgiet Connecti on() onthe
DbAdapt er, getting abbConnect i on.

3. Client code uses the database througtDth€nnect i on.

4. Client code releases the connection; return to step 2.

This turns out to be too simple for real use. The databaseysubs
tem attempts to avoid creating and destroyPigConnect i ons
indiscriminately, on the grounds that this is very slow. Be te-
lease in step 4 actually returns tlktConnect i on to a pool that
connections are selected from in step 2. Now we have a differe
problem; if a client dies for some reason while it holds a DbCo
nection, or there is some network trouble, or if for any otfeerson

a client never gets around to performing step 4, that DbCadiore
will never be returned to the pool and a resource leak willtlee ¢
ated. To solve this problem, I-BPM checked each of its cotioies

in step 2 to see if the original client is still alive, and wiknd out
an already allocated connection to the new client, belgethat the
original client is dead.

By itself, this is harmless; however, I-BPM’s method of dgt-
ing whether or not a client is dead is whether the connecton
five minutes old. If for any reason—database row locks, detab
backup, network latency, heavy load, just taking a while-lient
takes more than five minutes to process a transaction, itthens
risk that its connection will be given to some other client.

This is a disaster waiting to happen; the two clients tratisas
will be interleaved, and additionally the JDBC standardsdpet
mandate thatava. sql . Connect i on objects be thread safe.

5. CACHE VERIFICATION

After analysing this protocol, at the request of the dewelept
team we began analyzing part of the object cache, whose goal i
to make accesses to the database no more frequent thanllis tota
necessary. We specifically concentrated on the

ProcessDef i ni ti onProxy class, which acts as a layer be-
tween the main code and the database adapter specificallyefdc
onProcessDefinitionl npl structures.

There were a number of concurrency errors present; a ligtof r
ommendations for avoiding them is presented in Section GyMa
of these errors were harmless because of the use of

java. util . Hasht abl e, which does its own locking, but many
were not.

There were several public methods that accessed sharedittata
out locking it appropriately; these methods were:

e saveBr andNew(which is harmless becausetgdsht abl e
locks

e conboCommi t (which causes a race between two remove
invocations)

e comboEdit
e edit (which is harmless becauselddsht abl e locks

e comi t (which causes a race between get and put but only
if the id is shared)

e destroy (which causes a race between two remove invo-
cations)

e f et chFronServer (notpublic butinsufficient locking dis-
cipline causes public methods that call it to be faulty)

e i nval i dat eCache (which causes a race between a get
and a remove)

We also discovered several public methods that accesseddsha
data without any synchronization whatsoever; these were:

e set WFSessi on

set Last Saved

addPl anLi st ener

removePl anLi st ener

fireEvent

i sPl anChanged

set Trigger State

The object caches were publically visible and several atleeses
used them; the clasaFAdm nSessi onl npl goes so far as to
modify the caches directly, again with no locking discigliat all.

Some miscellaneous synchronization oddities discoveresé w

e get Uni quel d superfluously synchronizes on a static ob-
ject after synchronizing on the class,

e get Newl d synchronizes on a per-object lock, which ac-
complishes nothing.

An additional serendipitous discovery was an initialiaaterror in
thePr ocessDefi ni ti onPr oxy object; when a

ProcessDef i ni ti onProxy reads a process definition from
the database, it caches the identifier in grad d field, a number
uniquely determining the process. When a new process defini-
tion is created, this identifier has not yet been determiradr

the process definition is saved to the database, this idemntdiche
should be set to the actual value instead of the default vaflde
This necessary update was omitted.

This bug was discovered during a stress run through therayste
using JPF; we had no idea that it existed and just wanted ttyver
that the system behaves appropriately in the presence efadev
threads working on different process definitions. We disced
that they were all attempting to work on the same databasbbj
(that being object #0) and spent some hours trying to detgrmi
how we were “misusing” the system to cause this to occur,reefo
we traced it to this cache update never occuring.

6. RECOMMENDED PROGRAMMING DIS-
CIPLINE

There is a marked difference in kind between the errors testr
in Section 4 and those described in Section 5; the formersago
a subtle flaw in the protocol two subsystems use to commumicat
whereas the errors in the latter section largely come fresnffia
cient or incorrect locking discipline. A more rigid codintyle can
pick up the “low hanging fruit” of insufficient locking disgline, al-
though it will not have any real effect on larger architeatdtaws.

A comment, first: locking discipline is only important if avda
object is to be used in multiple threads simultaneously. Wiava
objects are written under the assumption that this will neeeur.
However, because the computation model for threads exjpbses

entirety of local storage to concurrent modification, it &weasy
for one insufficiently careful piece of concurrent code tolaie
this assumption.

One cure for this is to carefully quarantine the businessatar-
rency to a few gatekeeper objects, and this is the archrdcityle
that I-BPM used. There are a great many objects in a Javansyste
that become gatekeepers by default; anything that implezere-
mote interface exposes itself to the Java RMI implicit conency
(wherein multiple consumers of a published interface ameared

in the multiple independent threads of control accessiagsame
interface, none of which is made obvious through the use of)RM

For this to work, there are several requirements of a gapekee

1. Every method that accesses shared data must be protgcted b
locks.

2. Every piece of shared data must be protected by the same
lock each time.

3. Every method that returns data and every piece of public
data must either return a newly created independent object
for each client, or must return a gatekeeper object.

An interesting side effect is any object that is entirelydrealy
(that is, the fields are set up by the constructor and neveifiedd
after the object has been created) is a gatekeeper everebgbece
of locks, because the information can never change.

The I-BPM code base violated, largely by accident, omission
misunderstanding, each of these rules. Some of these ttita be
harmless because of the aforementioRlad ht abl e locking, but
we must recommend against trusting the locking disciplihthe
entire enterprise to this, for two reasons:

1. the Hashtable locks are too low level; that is, while theltiable
will prevent concurrent modification it does not protect you
over the very frequent get/modify/return or isPresengfins
or isPresent/delete cycles;

. serious concurrency errors can occur that do not invdige t
Hashtable but go unnoticed because the developers are used
to leaving concurrency discipline up to the standard Iprar

6.1 Rule#1

Java contains built in constructs for thread locks ingfiachr oni zed
keyword; an entire method can be marked as synchronizedsi j
small block; in the latter case, the object to be locked mastgec-
ified explicitly; in the former it is the object the method begs to
(or the class object, if the method is static).

Every piece of shared data must be protected by a synchrbnize

block, or by a synchronized method tag. An example corresjeis
from the I-BPM source code:

publ i c synchroni zed ProcessDefi nitionProxy
saveBrandNew ()

i.f.(!brandNew) {

}
}

An example of incorrect usage, where the shared data is cketdo

public void set WSessi on (WFSessi onl npl wfs)
{
|f (brandNew && user Agent Proxy == null) {
}
}
And a fixed version:
publ i c synchroni zed void
set WFSessi on (WFSessi onl npl wf s)
{
if (brandNew && user Agent Proxy == null) {
}
}

Note that these tags are largely unnecessary for privataadst

if it is the case that every public method is protected by &;loc
after all, there is no way that the private methods could Heda
without the lock. The same may be true of protected and defaul
visibility methods, but because they are also accessiblgbpcts

in the same package as the class in question, more attentish m
be paid to them.

6.2 Rule #2

For the locks to be effective, the shared data must alwaysde p
tected by the same lock. For object local data, this can biessih

by using the synchronized tag on the method; this becomef muc
more complex when an object is shared between objects.

I-BPM contained several cache bugs where methods that lock a
instance ofPr ocessDef i ni t i onPr oxy access static data that
is a part of the clasBr ocessDef i ni ti onProxy; as a result,
when two objects try to use this shared data, they each |dfeketnt
objects (themselves) and so the shared data is unprotected.

An example of incorrect usage (hgrdSt r uct Shar e is a static
cache shared by afir ocessDef i ni ti onPr oxy objects):

public synchronized void commit (String notUsed)

{

Obj ect CacheHol der hldr =

(oj ect CacheHol der) pdStruct Share. get (idkey);
if (hdlr !'= null)

sharedPdStruct = hldr.getProcDefStruct ();
if (sharedPdStruct !'= null) {

pdSt ruct Share. put (idkey,
}

)5

And now a fixed version:

public synchronized void commit (String notUsed)

{

synchroni zed (ProcessDefinitionProxy.class) {

Obj ect CacheHol der hldr =
(Onj ect CacheHol der) pdStruct Share. get (idkey);
if (hdlr !'= null)

sharedPdStruct = hldr. getProcDef Struct ();

if (sharedPdStruct !'= null) {
pdSt ruct Share. put (idkey, ...);
) }
} o
6.3 Rule #3

The idea behind this is to preserve the gatekeeper propgeitia
gatekeeper object somehow yields an object that is shatec:ee
threads that does not satisfy the gatekeeper propertasirbuble
is inevitable.

I-BPM went out-of-the-way to do this, packaging up all modata
in structures that are allocated freely per object. Howether ob-
ject cachegpdCache andpdSt r uct Shar e are public objects,
and were never locked properly; some of the classes thatthised
(for example, WFAdm nSessi onl npl) modified these caches
directly, but more common was to use them to iterate ovewall-a
able proxies and remove specified ones.

A better solution would be to move this functionality to the
ProcessDefi ni ti onPr oxy class, and then protect it behind a
synchronized block. This would preserve the gatekeepgepties,
and then the caches could be made private to the class. Webeca
aware that the process of rearchitecting this portion oPMBis
underway.

7. ARCHITECTURAL
RECOMMENDATIONS

We recommend rethinking the protocol cited in Section 4 \aith
eye toward reliable disconnection; either the accessifgcbmust

be known to the database (so that its liveness can be relihly
termined) or there must be a 1:1 relationship between reawmte
cessors and server objects, and the pooling must be doneson th
database adapter side (so that disconnection can be yedieddm-
plished) or disconnection of dead threads must be abandoned

This last option is easily dismissed as impractical in a veaild
environment, so one of the other two must be taken; the team ha
been reconsidering this part of the protocol for unrelaggbons
and has decided to take option #2. We also recommend regsiti
all objects that must deal with concurrency, and making thgm
gatekeeper objects, as recommended in Section 6.

8. DISCUSSION AND CONCLUSIONS

Deadlocks and race conditions are two sides of the “conoayre
coin” that arise due to sharing violations in multithreageagrams.
We chose to use Java programming language as an object df our e
fort due the absence of pointers that has been a constalerael
for formal analysis of imperative programs. This allowedtas
focus our efforts on concurrency correctness problemrattan
pointer analysis. We were also fortunate that we did not enit=y
state-space explosion, which would manifest in explititesmodel
checkers as processing time unlike the problem of runnirigobu
memory in BDD-based model checking. Furthermore, our work a
tests to the common folklore in the verification and test camity
that if the system under validation has bugs, it will martifest too
deep in the state space.

9. SUMMARY AND FUTURE DIRECTIONS

In this report we have shown that formal analysis accompiamith

a systematic methodology can successfully detect hardddfigs
in multithreaded programs. We detected two data corrugioors
and a number of race conditions in Fujitsu I-BPM product. \Akeh
provided a number of recommendations advocating a digeijpti
multithreaded programming to avoid errors such as deasdlankl
race conditions arising due to concurrency. All the bug®rigul
in this memo have or had been fixed in the field. To the best of
our knowledge, this is the first time a methodology involviog
mal analysis has been successfully applied to such a laftyease
project. As part of future work, we plan to capture the metiod
ogy as part of an Integrated Development Environment (IRI) f
Java software development so that software developersjigsu-u
could use integrated formal analysis to detect hard-to{fingk at
an early stage.

10. ACKNOWLEDGEMENTS

This work may not have even begun without the existence of JPF
which was developed and kindly provided by Dr. Willem Visser
of NASA. Dr. Visser backed it up with "round-the-clock” guid
ance and support, without which we would not have succeeded.
Shamim Quadir and Ivar Alexander of Fujitsu Software Caapor
tion provided great help in understanding the softwareitecture

and pointers to potential deadlocks and race conditions vark
would not have been possible without a strong suppport fram D
N. Kawato. Dr. K. Kawamura and Dr. T. Nakata of FLL provided
strong encouragement for this work.

11. REFERENCES
[1] Keith Swensorinterstage iFlow Architecture White Paper,
Fujitsu Software Corporation, July 21, 2003.

[2] G. Brat, K. Havelund, S. Park, and W. Visdelava
PathFinder - A second generation of a Java model checker ,
Proceedings of Workshop on Advances in Verification,
Chicago, Illinois, July 2000.

Client Tier

Web Tier i e
BPM Tier Connectivity

Custom

) e Message
ava £) Service
client = liop

other

Enactment
(Process
Definition

Interpreter)

Transactions /
Persistence

Analytics

Devidgr
Applet

UserAgent (Fagade)

Task
Manager
Quick
Forms
Custom
JSP Ul

internet

Explorer /
Netscape JSPrserviet
MNavigator Support

Admin
Applet

Cusiom
Applet

MODEL

HTTP

Figure 1: I-BPM Architecture

connect

use

disconnected

Figure 2: DBFSM Architecture

